Словарь маркетологаМашинное обучение 19 апреля 2022 16 мин на чтение 5 962 Артур ЗахаровКонтент-менеджер Содержание Нет времени читать? 7994218.118.144.109 Нажмите, чтобы проголосовать Машинное обучение 0 5 0 0Многие пользователи постиндустриальной эпохи задавались вопросом: Machine Learning – что это? Фантастическое будущее, которое уже наступило или очередная непонятная теория вроде квантового дуализма. Не то и не другое.Машинное обучение (МО), а именно так переводится этот термин, является ветвью искусственного интеллекта. Более детальнее – это методика анализа данных, которые позволяют машине/роботу/аналитической системе самостоятельного обучаться посредством решения массива сходных задач.Выглядит немного громоздко. Если упростить, то технология машинного обучения – это поиск закономерностей в массиве представленной информации и выбор наилучшего решения без участия человека.Принцип МО интересно продемонстрировали в гугловском ролике «Google’s DeepMind AI Just Taught Itself To Walk».Аналитической системе дали задание добраться из одной точки в другую, используя двуногую и четырехногую модель. При этом не показали, как выглядит ходьба и перемещение на четырех конечностях. Машина путем перебора массива данных, совершая ошибки и пробуя заново, нашла оптимальные варианты движения для двух моделей.Что касается фантастического будущего, то МО условно делят на три стадии внедрения:Технологии получают приставку «инновационные», а значит, к ним имеют доступ только крупные корпорации и правительственные структуры. Например, Google и Amazon, IBM и Apple первыми стали внедрять искусственный интеллект. Собственно любая система, которая пытается предсказать покупательский спрос на основе массива данных, связана с технологией машинного обучения.Технологиями пользуются люди с определенным багажом знаний в IT сфере, которые имеют доступ к современным разработкам, гаджетам. Появление новых сервисов, основанных на технологии искусственного интеллекта. Яркий пример – аналитические машины Гугла и Яндекса в контекстной рекламе.Технологии доступны даже школьнику, людям «лампового» поколения, которые вполне серьезно опасаются «Восстания машин» по аналогии с блокбастером «Терминатор».Многие эксперты считают, что искусственный интеллект находится на переходной стадии между вторым и третьим уровнем. То есть подкованные в IT люди уже пользуются инновациями, а большинство ещё побаивается.Сфера примененияМы рассмотрели Machine Learning – что это понятие означает. Теперь самое время рассмотреть для чего используется МО в бизнесе и жизни.Спросите человека, увлеченного робототехникой, о сфере применения машинного обучения. Вы услышите много фантастических историй. Например, роботы будут самостоятельно обучаться выполнять поставленные человеком задачи. Добывать в недрах Земли полезные ископаемые, бурить нефтяные и газовые скважины, исследовать глубины океана, тушить пожары и прочее. Программисту не нужно будет расписывать массивные и сложные программы, боясь ошибиться в коде. Робот, благодаря МО, сам будет обучаться вести себя в конкретной ситуации на основе анализа данных.Здорово, но пока фантастично. В будущем, может даже и не слишком далеком – это станет реальностью.На что сейчас способен искусственный интеллект и машинное обучение. Сегодня технологию используют больше в маркетинговых целях. Например, Google и Яндекс применяют МО для показа релевантной рекламы пользователям. Вы замечали не раз, что поискав в сети интересующий товар, потом вам несколько часов, а то и дней, показывают похожие предложения.По такому же принципу формируются умные ленты в соцсетях. Аналитические машины ФБ, ВК, Инстаграм, Твиттер исследуют ваши интересы – какие посты чаще просматриваете, на что кликаете, какие паблики или группы посещаете и другое. Чем дольше и чаще вы активничаете в соцсетях, тем более персонализированной становится ваша лента новостей. Это и хорошо и плохо. С одной стороны – машина отсеивает массив неинтересной (по её мнению) информации, а с другой – она сужает ваш кругозор. Маркетинг – ничего личного!Машинное обучение используется в структурах обеспечения безопасности. Например, система распознавания лиц в метро. Камеры сканируют лица людей, входящих и выходящих из метро. Аналитические машины сравнивают снимки с лицами, которые находятся в розыске. Если сходство высоко, то система подает сигнал. Сотрудники полиции идут на проверку документов у конкретного человека.Искусственный интеллект уже внедряют в медицинские учреждения. Например, обработка данных о пациентах, предварительная диагностика и даже подбор индивидуального лечения на основе информации о болезни человека.Виды машинного обученияМетоды машинного обучения – это совокупность задач, направленных на проверку гипотез, поиск оптимальных решений с помощью искусственного интеллекта. Выделяют три направления:Обучение с учителем (supervised learning). В этом случае в аналитическую систему загружается массив данных по конкретной задаче и задается направление – цель анализа. Как правило, нужно предсказать что-либо или проверить какую-либо гипотезу.Например, у нас есть данные о доходах интернет-магазина за полгода работы. Мы знаем, сколько продано товаров, сколько потрачено денег на привлечение клиентов, ROI, средний чек, количество кликов, отказов и другие метрики. Задача машины проанализировать весь массив данных и выдать прогноз дохода на предстоящий период – месяц, квартал, полгода или год. Это регрессивный метод решения задач. Другой пример. На основе массива данных, критериев выборки нужно определить является ли текст письма на электронную почту спамом. Или, имея данные успеваемости школьников по предметам, зная их IQ по тестам, пол и возраст, нужно помочь выпускникам определиться с профориентацией. Аналитическая машина выискивает и проверяет общие черты, сравнивает и классифицирует результаты тестов, оценки по школьной программе, склад ума. На основе данных делает прогноз. Это задачи классификации.Обучение без учителя (unsupervised learning). Обучение строится на том, что человеку и программе неизвестны правильные ответы заранее, имеется только некий массив данных. Аналитическая машина, обрабатывая информацию, сама ищет взаимосвязи. Зачастую на выходе имеем неочевидные решения.Например, мы знаем данные о весе, росте и типе телосложения 10 000 потенциальных покупателей джемперов определенного фасона. Загружаем информацию в машину, чтобы разбить клиентов по кластерам в соответствии с имеющимися данными. В результате мы получим несколько категорий людей со схожими характеристиками, чтобы для них выпустить джемпер нужного фасона. Это задачи кластеризации. Другой пример. Чтобы описать какое-либо явление приходится задействовать 200-300 характеристик. Соответственно визуализировать такие данные крайне сложно, а разобраться в них просто невозможно. Аналитическая система получает задание обработать массив характеристик и выбрать схожие, то есть сжать данные до 2-5-10 характеристик. Это задачи уменьшения размерности.Глубокое обучение (Deep learning). Глубокое машинное обучение – это обязательно анализ «Больших данных» – Big Data. То есть одним компьютером, одной программой переработать столько информации просто невозможно. Поэтому используются нейронные сети. Суть такого обучения в том, что огромное поле информации разделяется на небольшие сегменты данных, обработка которых делегируется другим устройствам. Например, один процессор только собирает информацию по задаче и передает дальше, четыре других процессора анализируют собранные данные и передают результаты дальше. Следующие в цепочке процессоры ищут решения.Например, система распознавания объектов работает по принципу нейросети. Сначала фотографируется объект целиком (получение графической информации), потом система разбивает данные на точки, находит линии из этих точек, строит из линий простые фигуры, а из них – сложные двумерные и далее 3D-объекты.Классы задач машинного обучения Обобщим задачи МО:Регрессия. На основании массива признаков или характеристик предсказать вещественный результат. То есть машина должна выдать конкретную цифру. Например, предсказать стоимость акций на бирже, количество запросов по ключевому слову, бюджет контекстной рекламы и другое.Классификация. Задача определить по количеству и качеству признаков, характеристик категорию объекта. Например, распознать по снимку конкретного человека в розыске, имея только описания на словах, определить спам, выявить болезнь у пациента.Кластеризация. Данные разбиваются на похожие категории. Например, космические объекты относят в конкретные категории по схожим признакам (удаленность, размер, планета или звезда и другие).Уменьшение размерности. Сжатие массива характеристик объекта до меньшего количества признаков для дальнейшей визуализации или использования в работе. Например, сжатие массива данных в архивы для передачи по сети.Основы машинного обученияЧасто приходится слышать о Machine Learning – что это очень сложная научная дисциплина, осилить которую могут только гении высшей математики и программирования. Однако МО на самом деле гораздо проще, чем кажется на первый взгляд. По крайней мере, изучить основы искусственного интеллекта может любой образованный человек.Что для этого нужно:Владеть английским языком на нормальном уровне. Зачем? Чтобы общаться без проблем в кругу единомышленников. В Европе, кстати, незнание английского считается признаком дурного тона. Акцент никого не интересует, но если имеются трудности с построением предложений, то будут трудности и с общением.Основы программирования. В машинном обучении применяется Python или Matlab. Также не лишним будет понимать, как работают базы данных.Неплохо подтянуть знания в математике, особенно раздел алгоритмов. Для начала подойдет классический курс Эндрю Энга «Машинное обучение». В курсе много практики, и, главное, нет упора на обширный математический багаж.Для углубленного обучения МО советуем записаться на курсы от ВШЭ или специализацию от МФТИ.Предлагаем добавить в свою библиотеку следующие книги по искусственному интеллекту и МО:Стюарт Рассел, Питер Норвиг «Искусственный интеллект. Современный подход»Джордж Ф. Люгер Искусственный интеллект. «Стратегии и методы решения сложных проблем»Петер Флах «Машинное обучение»Себастьян Рашка «Python и машинное обучение»Шарден Б., Массарон Л., Боскетти А. «Крупномасштабное машинное обучение вместе с Python»Тарик Рашид «Создаем нейронную сеть»Хенрик Бринк, Джозеф Ричардс «Машинное обучение»Все книги можно купить на Озоне.РезюмеМы изучили на примерах, что такое машинное обучение. Познакомились с методиками обучения, которые применяются в искусственном интеллекте. Узнали классы задач, решаемые МО. В предыдущем абзаце мы указали ряд книг и курсов, которые помогут в освоении технологий машинного обучения. К поиску по словамАртур ЗахаровКонтент-менеджер